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® |ntroduction
- ldea of nonlinear wide-band vibration energy harvesters
- Well-known difficulty - coexistence attractors

B Proposition: use of the principle of self-excitation and
entrainment

- Load resistance switching
- Global stability of highest-energy solution

B Experimental verification
- Steady-state
- Transient

B Conclusions
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Wide-band vibration energy harvester (VEH) /

REPIT=RAEKRT

B [inear energy harvester has “power-bandwidth trade-off”.
® Four categories of wider-band energy harvester: (Tang et al., 2010)
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Duffing-type nonlinear VEH

B  One of the most promising approaches.
B Moving/ fixed magnets, repulsive force, induction coils.
B This config can provide a significant wider bandwidth than linear.
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Two stable branches of Duffing-type oscillator A

Grayed region
indicates where the
steady-state response
IS unstable

0.06

0.05

resonance curves

_, 0.04 — — —backbone curve i
.§. O numerical solutions
> 0.03 1

u =0.1 m/s2
a

0.02 u_=0.2 m/s? -

0.01

SPIE Smart Structures and Materials/NDE and Health Monitoring, March 22 2016, Vas Vegas 5



Basins of attraction R Tk

B The set of initial conditions that lead to high-energy solution: blue
B The set of initial conditions that lead to low-energy solution: red
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Abrupt change of excitation frequency AT SRk
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/

How can we keep the response large? TRk

B \We have to think of some mechanism to maintain the response
on the high-energy solution even if the disturbance pushes the
response out of the solution. = Global stabilization

B Done by destabilizing the low-energy solution.
B Q:howitis realized?
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Load resistance switching RO TEREAS

B Harvesting mode: normal harvesting circuit
B Excitation mode: self-excitation circuit with negative resistance
B Proposition: switch the circuit between harvesting/ excitation modes
according to the displacement amplitude.
R(a) { Ryosiive  (a > ag); har\.fest.ing mode
Ryeqaiive (a < ag); excitation mode

® This simple control law makes the system perform as self-excitation
vibratory system, which is expected to yield “forced entrainment”.
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Basins of attraction R Tk

B The set of initial conditions that lead to high-energy solution: blue
B The set of initial conditions that lead to low-energy solution: red
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Abrupt change of excitation frequency

N/

REPIT=RAEKRT
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Experimental verification RO TREAS

B | arge-scale (L=23 mm, 100mW, 7.2 Hz) conceptual prototype
B Steady-state experiments

- Forward/backward-swept sinusoidal excitation

- Resonance curves
B Transient experiments

- Impulsive disturbance

SPIE Smart Structures and Materials/NDE and Health Monitoring, March 22 2016, Vas Vegas 12



Conceptual prototype (L=23 mm, 100 mW, 7.2 Hz\ggéﬁ
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Experimental setup
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Experiment #1: steady-state /

REPIT=RAEKRT

B EXxcite the harvester with sinusoidal swept waves in upward/
downward directions (ua=0.3 g).

B Experimental results are compared with

- theoretical solutions derived from a mathematical model
by averaging method;

- numerical solutions derived from the mathematical model
by MATLAB ode45 function.
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Results #1: Steady-state responses ROTERIA
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Experiment #2: transient RETEBEAS

B First excite the harvester in high-energy solution by sinusoidal
wave in 6.6 Hz (ua=0.3 g).

B Hit the end of the guide rod by hammer to see the transient
response to the impulsive disturbance.
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Transient response to impulsive disturbance ssrzuexs

b

Response w/o control
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N/

Transient response to impulsive disturbance ssrzuexs

Response w/ control

SPIE Smart Structures and Materials/NDE and Health Monitoring, March 22 2016, Vas Vegas 19



Transient responses

N/

REPIT=RAEKRT
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Conclusions R Tk

B |n order to overcome the difficulty of coexistence solutions in a
Duffing-type nonlinear energy harvester, a self-excitation
technique is proposed.

B By switching the circuits between the harvesting and excitation
modes, the proposed harvester can respond in the high-energy
solution even subjected to the disturbance.

B The experimentally obtained steady-state response of the
harvester well agreed with the solutions derived from the
mathematical model.

B |t was concluded from both the steady-state and transient
experiments that the proposed load resistance switching
successfully destabilized the low-energy solution and made the
high-energy solution globally stable.
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